Heart failure | |
---|---|
Classification and external resources | |
The major signs and symptoms of heart failure. |
|
ICD-10 | I50. |
ICD-9 | 428.0 |
DiseasesDB | 16209 |
MedlinePlus | 000158 |
eMedicine | med/3552 emerg/108 radio/189 med/1367150 ped/2636 |
MeSH | D006333 |
Heart failure (HF) is generally defined as inability of the heart to supply sufficient blood flow to meet the body's needs.[1][2][3] It has various diagnostic criteria, and the term heart failure is often incorrectly used to describe other cardiac-related illnesses, such as myocardial infarction (heart attack) or cardiac arrest.
Common causes of heart failure include myocardial infarction (heart attacks) and other forms of ischemic heart disease, hypertension, valvular heart disease and cardiomyopathy.[4] Heart failure can cause a large variety of symptoms such as shortness of breath (typically worse when lying flat, which is called orthopnea), coughing, ankle swelling and exercise intolerance. Heart failure is often undiagnosed due to a lack of a universally agreed definition and challenges in definitive diagnosis. Treatment commonly consists of lifestyle measures (such as decreased salt intake) and medications, and sometimes devices or even surgery.
Heart failure is a common, costly, disabling and potentially deadly condition.[4] In developing countries, around 2% of adults suffer from heart failure, but in those over the age of 65, this increases to 6–10%.[4][5] Mostly due to costs of hospitalization, it is associated with a high health expenditure; costs have been estimated to amount to 2% of the total budget of the National Health Service in the United Kingdom, and more than $35 billion in the United States.[6][7] Heart failure is associated with significantly reduced physical and mental health, resulting in a markedly decreased quality of life.[8][9] With the exception of heart failure caused by reversible conditions, the condition usually worsens with time. Although some patients survive many years, progressive disease is associated with an overall annual mortality rate of 10%.[10]
Contents |
Heart failure is a global term for the physiological state in which cardiac output is insufficient for the body's needs.
This occurs most commonly when the cardiac output is low (often termed "congestive heart failure" because the body becomes congested with fluid).[11]
In contrast, it may also occur when the body's requirements for oxygen and nutrients are increased, and demand outstrips what the heart can provide, (termed "high output cardiac failure") [12]. This can occur in the context of severe anemia, Gram negative septicaemia, beriberi (vitamin B1/thiamine deficiency), thyrotoxicosis, Paget's disease, arteriovenous fistulae or arteriovenous malformations.
Fluid overload is a common problem for people with heart failure, but is not synonymous with it. Patients with treated heart failure will often be euvolaemic (a term for normal fluid status), or more rarely, dehydrated.
Doctors use the words "acute" to mean of rapid onset, and "chronic" of long duration. Chronic heart failure is therefore a long term situation, usually with stable treated symptomatology.
Acute decompensated heart failure is a term used to describe exacerbated or decompensated heart failure, referring to episodes in which a patient can be characterized as having a change in heart failure signs and symptoms resulting in a need for urgent therapy or hospitalization.[13]
There are several terms which are closely related to heart failure, and may be the cause of heart failure, but should not be confused with it:
There are many different ways to categorize heart failure, including:
Functional classification generally relies on the New York Heart Association Functional Classification.[14] The classes (I-IV) are:
This score documents severity of symptoms, and can be used to assess response to treatment. While its use is widespread, the NYHA score is not very reproducible and doesn't reliably predict the walking distance or exercise tolerance on formal testing.[15]
In its 2001 guidelines, the American College of Cardiology/American Heart Association working group introduced four stages of heart failure:[16]
The ACC staging system is useful in that Stage A encompasses "pre-heart failure" - a stage where intervention with treatment can presumably prevent progression to overt symptoms. ACC stage A does not have a corresponding NYHA class. ACC Stage B would correspond to NYHA Class I. ACC Stage C corresponds to NYHA Class II and III, while ACC Stage D overlaps with NYHA Class IV.
Heart failure symptoms are traditionally and somewhat arbitrarily divided into "left" and "right" sided, recognizing that the left and right ventricles of the heart supply different portions of the circulation. However, heart failure is not exclusively backward failure (in the part of the circulation which drains to the ventricle).
There are several other exceptions to a simple left-right division of heart failure symptoms. Left sided forward failure overlaps with right sided backward failure. Additionally, the most common cause of right-sided heart failure is left-sided heart failure. The result is that patients commonly present with both sets of signs and symptoms.
Backward failure of the left ventricle causes congestion of the pulmonary vasculature, and so the symptoms are predominantly respiratory in nature. Backward failure can be subdivided into failure of the left atrium, the left ventricle or both within the left circuit. The patient will have dyspnea (shortness of breath) on exertion (dyspnée d'effort) and in severe cases, dyspnea at rest. Increasing breathlessness on lying flat, called orthopnea, occurs. It is often measured in the number of pillows required to lie comfortably, and in severe cases, the patient may resort to sleeping while sitting up. Another symptom of heart failure is paroxysmal nocturnal dyspnea also known as "cardiac asthma", a sudden nighttime attack of severe breathlessness, usually several hours after going to sleep. Easy fatigueability and exercise intolerance are also common complaints related to respiratory compromise.
Compromise of left ventricular forward function may result in symptoms of poor systemic circulation such as dizziness, confusion and cool extremities at rest.
Backward failure of the right ventricle leads to congestion of systemic capillaries. This generates excess fluid accumulation in the body. This causes swelling under the skin (termed peripheral edema or anasarca) and usually affects the dependent parts of the body first (causing foot and ankle swelling in people who are standing up, and sacral edema in people who are predominantly lying down). Nocturia (frequent nighttime urination) may occur when fluid from the legs is returned to the bloodstream while lying down at night. In progressively severe cases, ascites (fluid accumulation in the abdominal cavity causing swelling) and hepatomegaly (enlargement of the liver) may develop. Significant liver congestion may result in impaired liver function, and jaundice and even coagulopathy (problems of decreased blood clotting) may occur.
Common respiratory signs are tachypnea (increased rate of breathing) and increased work of breathing (non-specific signs of respiratory distress). Rales or crackles, heard initially in the lung bases, and when severe, throughout the lung fields suggest the development of pulmonary edema (fluid in the alveoli). Cyanosis which suggests severe hypoxemia, is a late sign of extremely severe pulmonary edema.
Additional signs indicating left ventricular failure include a laterally displaced apex beat (which occurs if the heart is enlarged) and a gallop rhythm (additional heart sounds) may be heard as a marker of increased blood flow, or increased intra-cardiac pressure. Heart murmurs may indicate the presence of valvular heart disease, either as a cause (e.g. aortic stenosis) or as a result (e.g., mitral regurgitation) of the heart failure.
Physical examination can reveal pitting peripheral edema, ascites, and hepatomegaly. Jugular venous pressure is frequently assessed as a marker of fluid status, which can be accentuated by the hepatojugular reflux. If the right ventriclar pressure is increased, a parasternal heave may be present, signifying the compensatory increase in contraction strength.
Dullness of the lung fields to finger percussion and reduced breath sounds at the bases of the lung may suggest the development of a pleural effusion (fluid collection in between the lung and the chest wall). Though it can occur in isolated left- or right-sided heart failure, it is more common in biventricular failure because pleural veins drain both into the systemic and pulmonary venous system. When unilateral, effusions are often right-sided, presumably because of the larger surface area of the right lung.
The predominance of causes of heart failure are difficult to analyze due to challenges in diagnosis, differences in populations, and changing prevalence of causes with age.
A 19 year study of 13000 healthy adults in the United States (the National Health and Nutrition Examination Survey (NHANES I) found the following causes ranked by Population Attributable Risk score:[17]
An Italian registry of over 6200 patients with heart failure showed the following underlying causes:[18]
Rarer causes of heart failure include:
Obstructive sleep apnea a condition of sleep disordered breathing overlaps with obesity, hypertension and diabetes and is regarded as an independent cause of heart failure.
Chronic stable heart failure may easily decompensate. This most commonly results from an intercurrent illness (such as pneumonia), myocardial infarction (a heart attack), arrhythmias, uncontrolled hypertension, or a patient's failure to maintain a fluid restriction, diet or medication.[19] Other well recognized precipitating factors include anaemia and hyperthyroidism which place additional strain on the heart muscle. Excessive fluid or salt intake, and medication that causes fluid retention such as NSAIDs and thiazolidinediones, may also precipitate decompensation.[20]
Heart failure is caused by any condition which reduces the efficiency of the myocardium, or heart muscle, through damage or overloading. As such, it can be caused by as diverse an array of conditions as myocardial infarction (in which the heart muscle is starved of oxygen and dies), hypertension (which increases the force of contraction needed to pump blood) and amyloidosis (in which protein is deposited in the heart muscle, causing it to stiffen). Over time these increases in workload will produce changes to the heart itself:
The general effect is one of reduced cardiac output and increased strain on the heart. This increases the risk of cardiac arrest (specifically due to ventricular dysrhythmias), and reduces blood supply to the rest of the body. In chronic disease the reduced cardiac output causes a number of changes in the rest of the body, some of which are physiological compensations, some of which are part of the disease process:
The increased peripheral resistance and greater blood volume place further strain on the heart and accelerates the process of damage to the myocardium. Vasoconstriction and fluid retention produce an increased hydrostatic pressure in the capillaries. This shifts of the balance of forces in favour of interstitial fluid formation as the increased pressure forces additional fluid out of the blood, into the tissue. This results in edema (fluid build-up) in the tissues. In right-sided heart failure this commonly starts in the ankles where venous pressure is high due to the effects of gravity (although if the patient is bed-ridden, fluid accumulation may begin in the sacral region.) It may also occur in the abdominal cavity, where the fluid build-up is called ascites. In left-sided heart failure edema can occur in the lungs - this is called cardiogenic pulmonary edema. This reduces spare capacity for ventilation, causes stiffening of the lungs and reduces the efficiency of gas exchange by increasing the distance between the air and the blood. The consequences of this are shortness of breath, orthopnea and paroxysmal nocturnal dyspnea.
The symptoms of heart failure are largely determined by which side of the heart fails. The left side pumps blood into the systemic circulation, whilst the right side pumps blood into the pulmonary circulation. Whilst left-sided heart failure will reduce cardiac output to the systemic circulation, the initial symptoms often manifest due to effects on the pulmonary circulation. In systolic dysfunction, the ejection fraction is decreased, leaving an abnormally elevated volume of blood in the left ventricle. In diastolic dysfunction, end-diastolic ventricular pressure will be high. This increase in volume or pressure backs up to the left atrium and then to the pulmonary veins. Increased volume or pressure in the pulmonary veins impairs the normal drainage of the alveoli and favors the flow of fluid from the capillaries to the lung parenchyma, causing pulmonary edema. This impairs gas exchange. Thus, left-sided heart failure often presents with respiratory symptoms: shortness of breath, orthopnea and paroxysmal nocturnal dyspnea.
In severe cardiomyopathy, the effects of decreased cardiac output and poor perfusion become more apparent, and patients will manifest with cold and clammy extremities, cyanosis, claudication, generalized weakness, dizziness, and syncope
The resultant hypoxia caused by pulmonary edema causes vasoconstriction in the pulmonary circulation, which results in pulmonary hypertension. Since the right ventricle generates far lower pressures than the left ventricle (approximately 20 mmHg versus around 120 mmHg, respectively, in the healthy individual) but nonetheless generates cardiac output exactly equal to the left ventricle, this means that a small increase in pulmonary vascular resistance causes a large increase in amount of work the right ventricle must perform. However, the main mechanism by which left-sided heart failure causes right-sided heart failure is actually not well understood. Some theories invoke mechanisms that are mediated by neurohormonal activation. Mechanical effects may also contribute. As the left ventricle distends, the intraventricular septum bows into the right ventricle, decreasing the capacity of the right ventricle.
Heart failure caused by systolic dysfunction is more readily recognized. It can be simplistically described as failure of the pump function of the heart. It is characterized by a decreased ejection fraction (less than 45%). The strength of ventricular contraction is attenuated and inadequate for creating an adequate stroke volume, resulting in inadequate cardiac output. In general, this is caused by dysfunction or destruction of cardiac myocytes or their molecular components. In congenital diseases such as Duchenne muscular dystrophy, the molecular structure of individual myocytes is affected. Myocytes and their components can be damaged by inflammation (such as in myocarditis) or by infiltration (such as in amyloidosis). Toxins and pharmacological agents (such as ethanol, cocaine, and amphetamines) cause intracellular damage and oxidative stress. The most common mechanism of damage is ischemia causing infarction and scar formation. After myocardial infarction, dead myocytes are replaced by scar tissue, deleteriously affecting the function of the myocardium. On echocardiogram, this is manifest by abnormal or absent wall motion.
Because the ventricle is inadequately emptied, ventricular end-diastolic pressure and volumes increase. This is transmitted to the atrium. On the left side of the heart, the increased pressure is transmitted to the pulmonary vasculature, and the resultant hydrostatic pressure favors extravassation of fluid into the lung parenchyma, causing pulmonary edema. On the right side of the heart, the increased pressure is transmitted to the systemic venous circulation and systemic capillary beds, favoring extravassation of fluid into the tissues of target organs and extremities, resulting in dependent peripheral edema.
Heart failure caused by diastolic dysfunction is generally described as the failure of the ventricle to adequately relax and typically denotes a stiffer ventricular wall. This causes inadequate filling of the ventricle, and therefore results in an inadequate stroke volume. The failure of ventricular relaxation also results in elevated end-diastolic pressures, and the end result is identical to the case of systolic dysfunction (pulmonary edema in left heart failure, peripheral edema in right heart failure.)
Diastolic dysfunction can be caused by processes similar to those that cause systolic dysfunction, particularly causes that affect cardiac remodeling.
Diastolic dysfunction may not manifest itself except in physiologic extremes if systolic function is preserved. The patient may be completely asymptomatic at rest. However, they are exquisitely sensitive to increases in heart rate, and sudden bouts of tachycardia (which can be caused simply by physiological responses to exertion, fever, or dehydration, or by pathological tachyarrhythmias such as atrial fibrillation with rapid ventricular response) may result in flash pulmonary edema. Adequate rate control (usually with a pharmacological agent that slows down AV conduction such as a calcium channel blocker or a beta-blocker) is therefore key to preventing decompensation.
Left ventricular diastolic function can be determined through echocardiography by measurement of various parameters such as the E/A ratio (early-to-atrial left ventricular filling ratio), the E (early left ventricular filling) deceleration time, and the isovolumic relaxation time.
No system of diagnostic criteria has been agreed as the gold standard for heart failure. Commonly used systems are the "Framingham criteria"[27] (derived from the Framingham Heart Study), the "Boston criteria",[28] the "Duke criteria",[29] and (in the setting of acute myocardial infarction) the "Killip class".[30]
Echocardiography is commonly used to support a clinical diagnosis of heart failure. This modality uses ultrasound to determine the stroke volume (SV, the amount of blood in the heart that exits the ventricles with each beat), the end-diastolic volume (EDV, the total amount of blood at the end of diastole), and the SV in proportion to the EDV, a value known as the ejection fraction (EF). In pediatrics, the shortening fraction is the preferred measure of systolic function. Normally, the EF should be between 50% and 70%; in systolic heart failure, it drops below 40%. Echocardiography can also identify valvular heart disease and assess the state of the pericardium (the connective tissue sac surrounding the heart). Echocardiography may also aid in deciding what treatments will help the patient, such as medication, insertion of an implantable cardioverter-defibrillator or cardiac resynchronization therapy. Echocardiography can also help determine if acute myocardial ischemia is the precipitating cause, and may manifest as regional wall motion abnormalities on echo.
Chest X-rays are frequently used to aid in the diagnosis of CHF. In the compensated patient, this may show cardiomegaly (visible enlargement of the heart), quantified as the cardiothoracic ratio (proportion of the heart size to the chest). In left ventricular failure, there may be evidence of vascular redistribution ("upper lobe blood diversion" or "cephalization"), Kerley lines, cuffing of the areas around the bronchi, and interstitial edema.
An electrocardiogram (ECG/EKG) may be used to identify arrhythmias, ischemic heart disease, right and left ventricular hypertrophy, and presence of conduction delay or abnormalities (e.g. left bundle branch block). Although these findings are not specific to the diagnosis of heart failure a normal ECG virtually excludes left ventricular systolic dysfunction.[31]
Blood tests routinely performed include electrolytes (sodium, potassium), measures of renal function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected. An elevated B-type natriuretic peptide (BNP) is a specific test indicative of heart failure. Additionally, BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If myocardial infarction is suspected, various cardiac markers may be used.
According to a meta-analysis comparing BNP and N-terminal pro-BNP (NTproBNP) in the diagnosis of heart failure, BNP is a better indicator for heart failure and left ventricular systolic dysfunction. In groups of symptomatic patients, a diagnostic odds ratio of 27 for BNP compares with a sensitivity of 85% and specificity of 84% in detecting heart failure.[32]
Heart failure may be the result of coronary artery disease, and its prognosis depends in part on the ability of the coronary arteries to supply blood to the myocardium (heart muscle). As a result, coronary catheterization may be used to identify possibilities for revascularisation through percutaneous coronary intervention or bypass surgery.
Various measures are often used to assess the progress of patients being treated for heart failure. These include fluid balance (calculation of fluid intake and excretion), monitoring body weight (which in the shorter term reflects fluid shifts).
By the Framingham criteria, diagnosis of congestive heart failure (heart failure with impaired pumping capability)[11] requires the simultaneous presence of at least 2 of the following major criteria or 1 major criterion in conjunction with 2 of the following minor criteria:
Major criteria:[33]
Minor criteria:[33]
Minor criteria are acceptable only if they can not be attributed to another medical condition such as pulmonary hypertension, chronic lung disease, cirrhosis, ascites, or the nephrotic syndrome.[33] The Framingham Heart Study criteria are 100% sensitive and 78% specific for identifying persons with definite congestive heart failure.[33]
Treatment focuses on improving the symptoms and preventing the progression of the disease. Reversible causes of the heart failure also need to be addressed: (e.g. infection, alcohol ingestion, anemia, thyrotoxicosis, arrhythmia, hypertension). Treatments include lifestyle and pharmacological modalities.
In acute decompensated heart failure (ADHF), the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Immediated treatments usually involve some combination of vasodilators such as nitroglycerin, diuretics such as furosemide, and possibly non invasive positive pressure ventilation (NIPPV).
The goal is to prevent the development of acute decompensated heart failure, to counteract the deleterious effects of cardiac remodeling, and to minimize the symptoms that the patient suffers. First-line therapy for all heart failure patients is angiotensin-converting enzyme (ACE) inhibition. ACE inhibitors (i.e., enalapril, captopril, lisinopril, ramipril) improve survival and quality of life in heart failure patients, and have been shown to reduce mortality in patients with left ventricular dysfunction in numerous randomized trials.[35][36] In addition to pharmacologic agents (oral loop diuretics, beta-blockers, ACE inhibitors or angiotensin receptor blockers, vasodilators, and in severe cardiomyopathy aldosterone receptor antagonists), behavioral modification should be pursued, specifically with regards to dietary guidelines regarding salt and fluid intake. Exercise should be encouraged as tolerated, as sufficient conditioning can significantly improve quality-of-life.
In patients with severe cardiomyopathy, implantation of an automatic implantable cardioverter defibrillator(AICD) should be considered. A select population will also probably benefit from ventricular resynchronization.
In select cases, cardiac transplantation can be considered. While this may resolve the problems associated with heart failure, the patient generally must remain on an immunosuppressive regimen to prevent rejection, which has its own significant downsides.
Without transplantation, heart failure caused by ischemic heart disease is not reversible, and cardiac function typically deteriorates with time. (In particular, diastolic function worsens as a function of age even in individuals without ischemic heart disease.) The growing number of patients with Stage D heart failure (intractable symptoms of fatigue, shortness of breath or chest pain at rest despite optimal medical therapy) should be considered for palliative care or hospice, according to American College of Cardiology/American Heart Association guidelines.
Prognosis in heart failure can be assessed in multiple ways including clinical prediction rules and cardiopulmonary exercise testing. Clinical prediction rules use a composite of clinical factors such as lab tests and blood pressure to estimate prognosis. Among several clinical prediction rules for prognosing acute heart failure, the 'EFFECT rule' slightly outperformed other rules in stratifying patients and identifying those at low risk of death during hospitalization or within 30 days.[37] Easy methods for identifying low risk patients are:
A very important method for assessing prognosis in advanced heart failure patients is cardiopulmonary exercise testing (CPX testing). CPX testing is usually required prior to heart transplantation as an indicator of prognosis. Cardiopulmonary exercise testing involves measurement of exhaled oxygen and carbon dioxide during exercise. The peak oxygen consumption (VO2 max) is used as an indicator of prognosis. As a general rule, a VO2 max less than 12-14 cc/kg/min indicates a poorer survival and suggests that the patient may be a candidate for a heart transplant. Patients with a VO2 max<10 cc/kg/min have clearly poorer prognosis. The most recent International Society for Heart and Lung Transplantation (ISHLT) guidelines[38] also suggest two other parameters that can be used for evaluation of prognosis in advanced heart failure, the heart failure survival score and the use of a criterion of VE/VCO2 slope > 35 from the CPX test. The heart failure survival score is a score calculated using a combination of clinical predictors and the VO2 max from the cardiopulmonary exercise test.
Heart failure is the leading cause of hospitalization in people older than 65.[39] In developed countries, the mean age of patients with heart failure is 75 years old. In developing countries, two to three percent of the population suffers from heart failure, but in those 70 to 80 years old, it occurs in 20—30 percent.
Heart failure affects close to 5 million people in the USA and each year close to 500,000 new cases are diagnosed. What is of more concern is that more than 50% of patients seek re-admission within 6 months after treatment and the average duration of hospital stay is 6 days.
In tropical countries, the most common cause of HF is valvular heart disease or some type of cardiomyopathy. Moreover as underdeveloped countries become more affluent, there has also been an increase in diabetes, hypertension and obesity which has resulted in heart failure.
In USA, HF is much higher in African Americans, Hispanics, Native Americans and recent immigrants from the eastern bloc countries like Russia. This high prevalence in these ethnic populations has been linked to high incidence of diabetes and hypertension. In many new immigrants to the USA the high prevalence of heart failure has largely been attributed to lack of preventive health care or substandard treatment.[40]
Both men and women have similar incidence of HF. However, there are distinct differences between the two genders.
New information suggests that elements of heart failure in African Americans and Caucasians may be different[41] and therapy for heart failure has different efficacies depending on racial, ethnic, and genetic backgrounds.
Heart failure basically means that the heart muscles have become weak and do not function as normal.[42] Heart failure is a progressive medical disorder. As the heart gets weaker, symptoms and signs become prominent. Heart failure can affect the entire heart or only the right or left side. In the majority of cases, both sides of the heart are affected.[43] HF can occur at any age depending on the cause. In general heart failure does increase with age.
|
|